Article ID Journal Published Year Pages File Type
5438469 Ceramics International 2017 17 Pages PDF
Abstract
Single phase magnesium ferrite (MgFe2O4) nanoparticles were prepared by the coprecipitation method followed by calcination at 700 °C for 1 h. The effects of polyvinyl alcohol (PVA) agent on the structural, microstructure, magnetic properties and AC magnetically induced heating characteristics of MgFe2O4 nanoparticles were investigated. The structure and cation distributions investigated by X-ray diffraction method showed single phase MgFe2O4 powders had partially inverse spinel structure in which the inversion coefficient increased by adding more PVA. The small particle size and narrow size distribution of the coprecipitated MgFe2O4 powders characterized by scanning electron microscopy were achieved using PVA agent. Magnetic properties of MgFe2O4 nanoparticles studied by vibrating sample magnetometry showed ferrimagnetic characteristics with the highest saturation magnetization and coercivity of 24.6 emu/g and 17 Oe, respectively. The coprecipitated MgFe2O4 nanoparticles assisted by PVA exhibited the lower AC heating temperature of 5.6 °C and specific loss power of 2.4 W/g in comparison with 6.1 °C and 2.7 W/g for the powders coprecipitated without using PVA.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,