Article ID Journal Published Year Pages File Type
5438489 Ceramics International 2017 36 Pages PDF
Abstract
Ferroelectric phase transition characteristic and electrical conduction mechanism of the high Curie-point (TC) 0.15Pb(Mg1/3Nb2/3)O3−0.4PbHfO3−0.45PbTiO3 (PMN-PHT) piezoelectric ceramics were studied by the temperature dependent Raman spectra and electrical properties. Sole first-order ferroelectric phase transition is demonstrated by the thermal hysteresis behavior of the temperature dependent dielectric constant and the dramatic drop of the derivative of inverse dielectric constant ξ= d(1/εr)/dT around TC in the PMN-PHT ceramics. The temperature dependent Raman spectroscopy not only provides further evidence for the ferroelectric to paraelectric phase transition appearing around TC in the PMN-PHT ceramics, but also reveals the successive phase symmetry changes of the polar nanoregions (PNRs), in which apparent anomalies appear in the Raman peaks' wavenumber, wavenumber distance, intensity, intensity ratio, and line width of some selected Raman modes upon heating. Typical sole cole-cole circle is obtained for the PMN-PHT ceramics in the temperature range of 440-560 °C, based on which the activation energy (Ea) of the electrical conduction is calculated being ~1.2 eV. Such low value of Ea indicates that the oxygen vacancies formed in the PHT-PMN ceramics induced by the evaporation of Pb during the sintering process dominate the high-temperature extrinsic electrical conduction.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , ,