Article ID Journal Published Year Pages File Type
5438505 Ceramics International 2017 6 Pages PDF
Abstract
In this study, 3-1 type lead zirconate titanate (PZT) ceramics with one-dimensional pore channels were produced by ionotropic gelation process of alginate/PZT suspensions. By increasing the sodium alginate concentration from 1.0wt% to 3.0 wt%, the alginate/PZT suspensions turned from Newtonian to non-Newtonian behavior with substantial increase in apparent viscosity. Accordingly, 3-1 type PZT ceramics with porosity decreasing from 56.78% to 41.44% were obtained, while the pore size distribution became non-uniform gradually. Based on the structural features, the 3-1 type PZT ceramics possessed much higher relative permittivity (εr) than that of 3-0 or 3-3 type PZT ceramics with similar porosities. Increase in the porosity led to a moderate decline in the longitudinal piezoelectric strain coefficient (d33), a reduction in the dielectric loss factor (tan δ), and a high value of hydrostatic strain coefficient (dh). As a result, the 3-1 type PZT ceramics possessed a maximal hydrostatic figure of merit (HFOM) value of 5597×10-15 Pa−1 when the porosity was 56.78%, which may be of help for low frequency hydrophones applications.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , ,