Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5438512 | Ceramics International | 2017 | 6 Pages |
Abstract
In the present study, a novel liquid polycarbosilane (LPCS) with a ceramic yield as high as 83% was applied to develop 3D needle-punched Cf/SiC composites via polymer impregnation and pyrolysis process (PIP). The cross-link and ceramization processes of LPCS were studied in detail by FT-IR and TG-DSC; a compact ceramic was obtained when LPCS was firstly cured at 120 °C before pyrolysis. It was found that the LPCS-Cf/SiC composites possessed a higher density (2.13 g/cm3) than that of the PCS-Cf/SiC composites even though the PIP cycle for densification was obviously reduced, which means a higher densification efficiency. Logically, the LPCS-Cf/SiC composites exhibited superior mechanical properties. The shorter length and rougher surfaces of pulled-out fibers indicated the LPCS-Cf/SiC composites to possess a stronger bonding between matrix and PyC interphase compared with the PCS-Cf/SiC composites.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Hao Zhong, Zhen Wang, Haijun Zhou, Dewei Ni, Yanmei Kan, Yusheng Ding, Shaoming Dong,