Article ID Journal Published Year Pages File Type
5438515 Ceramics International 2017 20 Pages PDF
Abstract
The effect of Ti4+ substitution on the crystal structure and magnetic properties of the Bi0.8Ba0.2FeO3 ceramic nanoparticles was investigated. Bi0.8Ba0.2Fe1−xTixO3 (x=0, 0.05, 0.10, 0.15 and 0.20) ceramics have been prepared by tartaric acid modified sol-gel method. Rietveld refinement of the XRD profile pattern of Bi0.8Ba0.2FeO3 ceramic revealed the formation of pseudo-cubic (Pm3m) phase and confirms structural distortion on incorporation of Ti4+ ions, which consequently transform pseudo-cubic (Pm3m) structure to tetragonal (P4mm) structure. The saturation magnetization increases appreciably on Ti4+ ions substitution in Bi0.8Ba0.2FeO3 and is found to be 0.57 emu/g for Bi0.8Ba0.2Fe0.95Ti0.05O3 ceramic. The increase in the magnetization by the substitution of non-magnetic Ti4+ ions has been ascribed to crystal structure modification made by the Ti4+ ions. However, a sudden decrease in the magnetization has been observed for Bi0.8Ba0.2Fe0.8Ti0.2O3 ceramic nanoparticles. The prominent Ti (3d) - O (2p) hybridization would stabilize the ferroelectric distortion and consequently reduce the magnetization. Scanning Electron Microscope (SEM) image of Bi0.8Ba0.2Fe0.8Ti0.2O3 ceramic sample revealed the formation of dense microstructure with uniform grains size.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,