Article ID Journal Published Year Pages File Type
5438528 Ceramics International 2017 8 Pages PDF
Abstract
A novel hierarchical heterostructure consisting of porous NiO nanosheets and flower-like ZnO assembled by hexagonal nanorods was successfully fabricated by a simple two-step hydrothermal approach. Flower-like ZnO was obtained by the first step hydrothermal method. Through the second step hydrothermal method, porous NiO nanosheets grew on the surface of flower-like ZnO to realize integration of ZnO and NiO, so the p-n heterostructure between ZnO and NiO formed. The samples were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX). Gas sensing test results showed that the sensor based on NiO/ZnO composite exhibited superior sensing properties to acetone. The sensor response to 100 ppm acetone was about 205.14 at the optimum working temperature of 240 °C, and the response and recovery times were about 7 and 20 s, respectively. The enhanced response might be attributed to heterojunction and larger specific surface area provided by attached porous NiO nanosheets. The rapid response and recovery characteristics and improved selectivity attributed to the porous structure and good catalytic actions of NiO nanosheets.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,