Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5438543 | Ceramics International | 2017 | 9 Pages |
Abstract
This paper reports the processing feasibility of electrophoretic deposition combined with hot pressing in the fabrication of dense tubular SiCf/SiC composites using a cylindrical mold. A simulation of pressure distribution using ANSYS software was performed by varying the angular inclinations in a cylindrical mold with an 'out â in' configuration so as to ensure a maximum and uniform conversion of vertical hot press force to the lateral side of a centrally-located preform through graphite powder. The simulation revealed an inhomogeneous pressure distribution along the height of the preform, which could be minimized by mold optimization to achieve a more uniform tube density. To verify this, two different preform architectures such as 0/90° woven 2-D fabric rolled in a jelly state and filament winding with two plies having an inter-ply angle of 55° were hot-pressed using a mold fabricated based on the simulation after infiltrating the matrix phase by electrophoretic deposition. The density of the tube could be increased with more uniform microstructures. Although the tube using a filament winding preform exhibited a lower flexural strength (105 MPa) and relative density (90%) than those with the preform rolled in a jelly state (221 MPa, 95%), the results revealed a high degree of fiber pull-out due to the PyC coating on the SiC fiber.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Pipit Fitriani, Amit Siddharth Sharma, Arifin Septiadi, Ji-Yeon Park, Dang-Hyok Yoon,