Article ID Journal Published Year Pages File Type
5438567 Ceramics International 2017 5 Pages PDF
Abstract
The thermoelectric transport properties of atomic layer deposited (ALD) gallium doped zinc oxide (GZO) thin films were investigated to identify their potential as a thermoelectric material. The overall thermoelectric properties, such as the Seebeck coefficient and electrical conductivity, were probed as a function of Ga concentration in ZnO. The doping concentration was tuned by varying the ALD cycle ratio of zinc oxide and gallium oxide. The GZO was deposited at 250 °C and the doping concentration was modified from 1% to 10%. Sufficient thermoelectric properties appeared at a doping concentration of 1%. The crystallinity and electronic state, such as the effective mass, were investigated to determine the enhancement of the thermoelectric properties. The efficient Ga doping of GZO showed a Seebeck coefficient of 60 μV/K and an electrical conductivity of 1808.32 S/cm, with a maximum power factor of 0.66 mW/mK2.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,