Article ID Journal Published Year Pages File Type
5438589 Ceramics International 2017 24 Pages PDF
Abstract
Arrayed In2O3 nanosheets were synthesized directly via a two-step solution approach on an Al2O3 ceramic tube. Their morphology and structure were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis absorption spectroscopy, and scanning electron microscopy (SEM). The results reveal that the length of each nanosheet is about 1 µm, the width of the bottom of nanosheet is about 200 nm. Importantly, the In2O3 nanosheets with large specific surface area possess highly sensing performance for ethanol detection. The response value to 100 ppm ethanol is about 45 at an operating temperature of 280 °C, and the response and recovery time are extremely short. It is expected that the directly grown In2O3 nanosheets with large specific surface area and excellent sensing properties will become a promising functional material in monitoring and detecting ethanol.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,