Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5438670 | Ceramics International | 2017 | 24 Pages |
Abstract
Sn-0.7Cu is among the least expensive types of lead-free solders available. However, its poor mechanical properties have limited its application. In this study, Sn-Cu lead-free solder reinforced with amorphous silica (SiO2) nanoparticles was synthesized through powder metallurgy route. Desired mixtures of raw materials was mechanically milled, compressed, sintered and extruded to prepare bulk solder samples. The samples were characterized by optical and electron microscopy as well as mechanical tests. The results showed that mechanical properties were increased by addition of SiO2 nanoparticles to the solder matrix. Addition of 1.5Â wt% ceramic reinforcement to the composite increased tensile, yield and compressive strengths up to 27%, 23% and 41%, respectively, compared to those of the monolithic sample. In addition, the ceramic nanoparticles caused an up to 50% decrease in the wetting angle between the substrate and the nanocomposite solder.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Zahra Fathian, Ali Maleki, Behzad Niroumand,