Article ID Journal Published Year Pages File Type
5438723 Ceramics International 2016 9 Pages PDF
Abstract
WC-Co cemented carbides were rapidly diffusion bonded to 40Cr steels with pure Ni as interlayers by utilizing plasma activated sintering (PAS). The bonding was carried out at 750 °C for 13 min under a pressure of 40 MPa. It was found that the roughness of the initial surfaces still plays an important effect on the microstructure and mechanical behavior of the joints diffusion bonded by PAS irrespective of the electric current applied during bonding. The adoption of smoother original surfaces was significantly favorable to eliminate the interfacial interstices and microvoids. Correspondingly, the shear strength of the diffusion bonded joints increased with decreasing surface roughness. Additionally, the effect of interlayer thickness on the shear strength of the joints was also evaluated, and the results showed that the strength decreased sharply when thicker interlayer was employed. A maximum value of shear strength, 293.07 MPa, was obtained when the original surfaces was ground with P1200 grit SiC paper and at the same time 50 µm thick interlayer was used. In this case, the fracture initiated and run predominantly along the bonding interfaces instead of in the WC-Co substrate.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,