Article ID Journal Published Year Pages File Type
5438915 Ceramics International 2017 16 Pages PDF
Abstract
A perovskite-type BaCe0.5Fe0.3Bi0.2O3-δ (BCFB) was employed as a novel cathode material for proton-conducting solid oxide fuel cells (SOFCs). The single cells with the structure of NiO-BaZr0.1Ce0.7Y0.2O3-δ (BZCY7) anode substrate|NiO-BZCY7 anode functional layer|BZCY7 electrolyte membrane|BCFB cathode layer were fabricated by a dry-pressing method and investigated from 550 to 700 °C with humidified hydrogen (~3% H2O) as the fuel and the static air as the oxidant. The low interfacial polarization resistance of 0.098 Ω cm2 and the maximum power density of 736 mW cm−2 are achieved at 700 °C. The excellent electrochemical performance indicates that BCFB may be a promising cathode material for proton-conducting SOFCs.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,