Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5438949 | Ceramics International | 2017 | 17 Pages |
Abstract
In this study, the influence of annealing temperature on structural, morphological, and nano-mechanical properties of SmCo5 thin films, which was produced by RF magnetron sputtering technique, was investigated. A set of 1 µm thick SmCo5 thin films were grown on a Si (100) substrate at room temperature, and subsequently annealed at 400â, 500â, 600â, and 700â in an argon atmosphere. These films have a hexagonal CaCu5 structure with (110) preferential orientation corresponding to SmCo5 films observed. The Structural morphological and nano-mechanical properties of SmCo5 thin films were examined using the Grazing Incident X-ray Diffraction (GIXRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Nano indentation techniques. Results showed that the as-deposited SmCo5 thin films had a polycrystalline structure. Following the heat treatment, both crystallite and grain size increased and thin film crystallinity improved. In addition, nano-hardness and reduced elastic modulus of the SmCo5 thin films were measured with a Berkovich tip. Nano hardness and reduced elastic modulus values decrease with the increasing annealing temperature.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
M. Kuru, A.E. Ozmetin, A. Ozmetin, O. Sahin,