Article ID Journal Published Year Pages File Type
5439092 Ceramics International 2017 5 Pages PDF
Abstract

A combination of high-energy ball milling and constant pressure chemical vapor deposition was used to prepare carbon-coated SiO/ZrO2 composites. It was found that the as-prepared composites were composed of amorphous carbon, amorphous SiO, and paracryslalline ZrO2. The electrochemical analysis results revealed excellent electrochemical performances for the composites, including a high initial discharge capacity (1737 mA h g−1), a remarkable cyclic stability (reversible capacity of 721 mA h g−1 at 800 mA g−1, after 100 cycles), and a good rate capability (870 mA h g−1 at 800 mA g−1). These features demonstrate that these composites are promising alternative candidates for high-efficiency electrode materials of Li-ion batteries.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , , ,