Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5439176 | Ceramics International | 2017 | 6 Pages |
Abstract
Here we have investigated the effect of Mn2+ substitution on the structural, electrical transport and dielectric properties of Mg-Zn ferrite having chemical formula MnxMg0.5âxZn0.5Fe2O4 (0.00â¤xâ¤0.30) synthesized by an oxalate precursor chemical method. X-ray diffraction study reveals the formation of single cubic structure with spinel lattice symmetry without secondary phases having the crystallite size in the range from ~ 25.35â30.36 nm. The Mn2+ substitution leads to the expansion of spinel lattice unit cell of Mg-Zn ferrite system as evidenced from the increase of lattice constant (a) with respect to Mn2+ content. Decrease in the d.c. electrical resistivity as a function of temperature confirms the semiconducting nature of the Mn2+ substituted Mg-Zn ferrite; which is attributed to the Verwey hopping mechanism between Fe2+â Fe3+ ions and Mn2+â Mn3+. The frequency (100 Hzâ1 MHz) dependence dielectric properties viz. dielectric constant and dielectric loss measurement shows the usual dielectric dispersion in accordance with the Maxwell-Wagner type interfacial polarization. The a.c. resistivity measurement (100 Hzâ1 MHz) suggests the small polaron hopping type conduction is present in the Mn2+ substituted Mg-Zn ferrite system.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
U.R. Ghodake, Rahul.C. Kambale, S.S. Suryavanshi,