Article ID Journal Published Year Pages File Type
5439318 Ceramics International 2016 6 Pages PDF
Abstract
(Ba, Sr)TiO3-Al2O3-SiO2 glass ceramic system with various SiO2/Al2O3 ratios was investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), dielectric spectroscopy and impedance spectroscopy. The XRD results demonstrated that the proper SiO2/Al2O3 ratio could promote the crystallization of the major crystalline phase from the glass matrix. The dielectric property investigations showed that the dielectric constant passes through a maximum value while the dielectric breakdown strength has a minimum value with increasing SiO2/Al2O3 ratio. Meanwhile, the complex impedance analyses suggest the resistance of the glass-crystal interface rapidly decreases and the capacitance of the crystal slightly decreases with the increase of SiO2/Al2O3 ratio. The relaxation mechanisms of the (Ba, Sr)TiO3 glass ceramics changed from localized relaxation to long range conductivity as the SiO2/Al2O3 ratio was increased from 1.43 to 1.83. The variations in the dielectric response and the activation energy of the glass-crystal interface in the (Ba, Sr)TiO3 glass ceramics with the ratio of 2.40 could be attributed to the crystallization of fresnoite phase.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,