Article ID Journal Published Year Pages File Type
5439321 Ceramics International 2016 5 Pages PDF
Abstract
SnO2 ceramic nanoparticles homogeneously doped with Sm3+ ions were synthesized via a sol-gel method, followed by drying and annealing in air. X-ray diffractometry, FT-IR spectrometry and transmission electron microscopy were used to characterize the nanoparticulate samples. After annealing, both doped and undoped SnO2 nanopowders were shown to adopt the rutile tetragonal crystal form and to exhibit characteristic Sn-O-Sn vibrations. The average particle size was found to be in the region of 23-28 nm. Photoluminescence analysis at room temperature demonstrated strong enhancement of the visible emission from Sm3+, via energy transfer from the SnO2 host matrix to the dopant. The maximum emission efficiency was observed for a concentration of 1.5 atom% Sm3+.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,