Article ID Journal Published Year Pages File Type
5439407 Composites Part A: Applied Science and Manufacturing 2017 8 Pages PDF
Abstract

The objective of this study was to investigate the use of peat as a potential lignocellulose source in composites manufactured by twin-screw extrusion. The effects of peat decomposition rate and particle size on the mechanical properties and moisture resistance of peat-polypropylene (PP) composites under cyclic conditions were evaluated. The properties of the peat-PP composites were compared to commercial lignocellulosic fibre products, namely wood-plastic composite (WPC), medium density fibreboard (MDF) and hardboard (HB). The results show that prior cyclic freeze-thaw testing peat-PP composites had properties equal to commercial WPC, but their mechanical permanence was better after freeze-thaw conditioning. When moderately decomposed, smaller particle-size peat was used, peat-PP composites had better dimensional stability, though particle size did not affect as much as the decomposition degree. Thus, the chemical structure of peat has a greater influence on composite durability, as better water and weather resistance are achieved with peat that is more decomposed.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,