Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5439541 | Composites Part A: Applied Science and Manufacturing | 2017 | 7 Pages |
Abstract
Effects of silane and silica enrichment of carbon fibers (CFs) on interfacial properties of methylphenylsilicone resin (MPSR) composites were investigated. CFs were oxidized, grafted with 3-aminopropyltriethoxysilane (APS) and then modified with silica nanoparticles prepared by the sol-gel polymerization of tetraethoxysilane (TEOS). Chemical structures of CFs were characterized by confirming the successful grafting. Scanning electron microscopy (SEM) showed a uniform distribution of silica nanoparticles on the CFs surface. The interlaminar shear strength (ILSS) and impact toughness of silanized CF (CF-Siloxane) composites were 12.05% and 7.46% higher than those of untreated composites. However, ILSS and impact toughness of the hybrid fiber (CF/Si) composites obtained from the hydrolysis of different concentrations TEOS improved significantly, especially for grafting silica enrichment with the TEOS concentration of 0.05Â mol/L (CF/Si0.05), increasing 45.64% in ILSS and 29.59% in impact properties. Moreover, the hydrothermal aging resistance was also improved greatly. Meanwhile, functionalization processes did not decrease fiber tensile strength.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Guangshun Wu, Lei Chen, Li Liu,