Article ID Journal Published Year Pages File Type
5439615 Composites Part A: Applied Science and Manufacturing 2017 9 Pages PDF
Abstract
Poor sensitivity in low pressure regimes (<100 kPa) of pressure-sensitive rubbers (PSRs) is one of their major disadvantages compare to other piezoresistive materials. The reasons induced the poor sensitivity include bad dispersion and week interface of multi-walled carbon nanotubes (MWCNTs) applied in poly(dimethyl siloxane) (PDMS). A novel vinyl-terminated poly(dimethyl siloxane)-poly(phenylmethyl siloxane)-multi-walled carbon nanotubes (V-P-MWCNTs) with core-dualshell nanostructure is fabricated by noncovalently functionalized method. The V-P-MWCNTs as conductive fillers exhibits homogenous dispersion as well as good interfacial interaction in PDMS matrix. Slightly above the percolation threshold (0.19 vol.%), the PDMS-based nanocomposites with 0.2 vol.% of V-P-MWCNTs shows high piezoresistive sensitivity (22.16 × 10−3 kPa−1), high electrical conductivity (5.43 × 10−3 S/m) and low Young's modulus (288.83 kPa). These results demonstrate that the V-P-MWCNTs are of great potential as the conductive fillers for improved piezoresistive sensitivity of PDMS nanocomposites, which can be potentially applied in the flexible touch sensors.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,