Article ID Journal Published Year Pages File Type
5439630 Composites Part A: Applied Science and Manufacturing 2017 38 Pages PDF
Abstract
Both temperature dependent model and pyrolysis dependent model were proposed to investigate the lightning strike damage of carbon fiber reinforced polymer (CFRP) composite laminates, where lightning in-plane and in-depth damages were evaluated by the two models, respectively. Firstly, the simulated results were compared with the experimental data of IM600/133 composites to determine the feasibility of the models. The results affirmed that lightning in-plane damage evaluated by temperature dependent model had a good agreement with experimental results while the lightning in-depth damage evaluated by pyrolysis dependent model matched well with experimental results. Then the proposed models and methods were confirmed by the simulation of the lightning strike damage of TR50S15L/YPH-308 laminates and the comparison between the simulated and experimental results. The appropriate models and methods to evaluate lightning in-plane and in-depth damages are helpful for the research of lightning damage behaviors, mechanisms and anti-lightning optimizations of CFRP.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,