Article ID Journal Published Year Pages File Type
5440336 Journal of the European Ceramic Society 2017 9 Pages PDF
Abstract
In the present study, zinc sulfide (ZnS) and calcium lanthanum sulfide (CaLa2S4, CLS) composite ceramics were consolidated via field-assisted sintering of 0.5ZnS-0.5CLS (volume ratio) composite powders at 800-1050 °C. Through sintering curve analyses and microstructural observations, it was determined that between 800 and 1000 °C, grain boundary diffusion was the main mechanism controlling grain growth for both the ZnS and CLS phases within the composite ceramics. The consolidated composite ceramics were determined to be composed of sphalerite ZnS, wurtzite ZnS and thorium phosphate CLS. The sphalerite-wurtzite phase transition of ZnS was further demonstrated to be accompanied by the formation of stacking faults and twins in the ceramics. It was also found that the addition of the CLS phase improved the indentation hardness of the ceramics relative to pure ZnS by homogeneous dispersion of ZnS and CLS small grains.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,