Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5440426 | Journal of the European Ceramic Society | 2017 | 7 Pages |
Abstract
BaCexTi1âxO3 (BCT) ceramics with compositions x = 0, 0.1, 0.12 and 0.15 were synthesized using conventional solid state reaction route. Systematic exploration of enhancing electrocaloric effect (ECE) in BaTiO3 by rare earth dopant Ce is presented. BaCe0.12Ti0.88O3 exhibited an electrocaloric strength of â¼0.35 K m/MV at 351 K, which caters the need for a series of high-level ECE material. Further, the temperature dependence of pyroelectric coefficient is established for all compositions. The pyroelectric figure of merits (FOMs) for current responsivity (Fi), voltage responsivity (Fv), detectivity (Fd) and energy harvesting (Fe and Fe*) are calculated and the results reveal that x = 0.1 could be a technologically superior candidate for pyroelectric devices. Further, BaCe0.15Ti0.85O3 exhibited highest electrical energy storage performance of 115 kJ/m3 compared with 71 kJ/m3 in BaTiO3. Our findings in this work may provide a better understanding for developing high ECE materials combined with pyroelectric and energy storage performance of Ce substituted BaTiO3 ceramics.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
K.S. Srikanth, Rahul Vaish,