Article ID Journal Published Year Pages File Type
5440571 Journal of the European Ceramic Society 2017 13 Pages PDF
Abstract
Hot isostatically pressed monolithic and multilayer graphene (MLG) reinforced silicon nitride nanocomposites have been investigated by ball-on-disc tests under variable loading conditions. Tests were carried out at room temperature with three different normal loads (10, 40 and 80 N), and six sliding speeds (10, 20, 50, 100, 150 and 200 mm/s) without lubrication using commercial silicon carbide ball counterparts for 54 tribosystems. The aim of the research work was to construct 2D wear transition and 3D wear rate maps of the investigated ceramic composites. The 3D maps visualizing the specific wear rate and the dimensionless wear coefficient as a function of normal load and sliding speed have been completed with morphological analysis of wear tracks and identification of the dominant wear mechanisms. The presented ceramic wear maps provide useful aid for predicting the wear performance of the investigated nanocomposites under various loading conditions.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,