Article ID Journal Published Year Pages File Type
5440929 Journal of the European Ceramic Society 2017 9 Pages PDF
Abstract
A new class of ceramic matrix composites based on Cr2AlC MAX-phase containing 5 and 10 wt.% of SiC fibers was developed in this investigation. The Cr2AlC/SiC composites were performed through two consecutives steps: i) synthesis of the pure Cr2AlC phase from its elemental constituents by reactive method under argon atmosphere at 1400 °C and particle size refinement, and ii) processing of Cr2AlC powder and SiC fibers followed by densification using the field assisted sintering technology/spark plasma sintering. Cr2AlC/SiC composites presented high density (98.6%) with an excellent dispersion of the fibers within the matrix and a strong matrix/fiber interfase. Tribological behavior of the developed composites was studied under dry conditions to reveal the role played by the SiC fibers. Incorporation of the SiC fibers within the Cr2AlC matrix reduced the friction coefficient up to 20% for low testing loads, while the wear resistance increased up to 70-80% independently of the applied load.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,