Article ID Journal Published Year Pages File Type
5442442 Optical Materials 2017 8 Pages PDF
Abstract

•Red phosphors Rb2TiF6:Mn4+ have been synthesized by the ion exchange method.•This red phosphor exhibits intense red emission under blue light excitation.•Rb2TiF6:Mn4+ shares excellently thermal quenching resistance and color stability.•The white LEDs based on this phosphor exhibit excellently optical properties.

Red-emitting phosphor plays a critical role in improving performance of the phosphor-converted white light-emitting diodes (pc-WLEDs). Herein, a red-emitting phosphor, Rb2TiF6:Mn4+, was synthesized via the ion exchange method under mild condition. The crystal structure and morphology were characterized by the powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The Rietveld refinements of Rb2TiF6:Mn4+ indicate that this sample is of single phase with hexagonal crystal structure. The as-prepared Rb2TiF6:Mn4+ has sharp red emissions with broad excitation band at ∼460 nm. The luminescent behavior of Mn4+ was discussed in detail. The temperature-dependent emission spectra of Rb2TiF6:Mn4+ indicate that this phosphor shares high thermal quenching resistance and excellent color stability. A series of WLEDs with tunable color rendering index and color temperature were fabricated by combining commercial Y3Al5O12:Ce3+ and Rb2TiF6:Mn4+ on blue GaN-LED chips. With the addition of Rb2TiF6:Mn4+, WLED with wide gamut was obtained with low color temperature (3123 K), high color rendering index (91.5) and high luminous efficacy (187.9 lm/W). These findings show this phosphor could be a promising commercial red phosphor in wide color-gamut WLEDs.

Graphical abstractDownload high-res image (134KB)Download full-size image

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,