Article ID Journal Published Year Pages File Type
5442619 Optical Materials 2017 6 Pages PDF
Abstract
Highly transparent YAG/10at.%Yb:YAG/YAG planar waveguide ceramics were fabricated by the non-aqueous tape casting and solid-state reactive sintering technology. The tapes are relatively homogeneous and the green body shows a dense structure without distinct interfaces after the treatment of debinding and cold isostatic pressing. YAG/10at.%Yb:YAG/YAG ceramics with almost full dense structure were obtained by vacuum-sintering at 1760 °C for 30 h. For the mirror-polished sample with the thickness of 3.5 mm, the In-line transmittance was measured to be 83.6% at the visual wavelength of 400 nm. The diffusion distance of the Yb3+ ions was about 215 μm along the thickness direction of the ceramics. In the lasing experiments, the YAG/10at.%Yb:YAG/YAG planar waveguide ceramics were end-pumped by a 976 nm semiconductor diode laser and enabled efficient continuous-wave lasers, which resulted in a maximum output power of 1.6 W and a slope efficiency of 34.4% at 1030 nm.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , , , , , , , , ,