Article ID Journal Published Year Pages File Type
5442713 Optical Materials 2017 8 Pages PDF
Abstract
The thermoluminescence of beta irradiated K-Mg-Al-Zn fluorophosphate glass is reported. A glow-curve corresponding to 10 Gy measured at 1 °C/s shows two peaks, a weaker-intensity one at 70 °C and a more prominent one at 235 °C, the subject of this report. The main peak was observed to fade with delay between irradiation and measurement and specifically, by 11% in 15 h. Its dose response is superlinear in the dose range 1-190 Gy although the change was linear for the initial 10 Gy. Regarding kinetic analysis, the activation energy of the higher temperature peak was evaluated as 1.31 eV and that of the lower temperature peak was found as 0.47 eV. It was also noted that the main peak is affected by thermal quenching with an activation energy for thermal quenching equal to 1.37 eV. It is proposed that the mechanism associated with the thermoluminescence in K-Mg-Al-Zn fluorophosphate glass is that electrons trapped by the metal cations are released during heating and then recombine with holes at oxygen sites.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,