Article ID Journal Published Year Pages File Type
5442716 Optical Materials 2017 7 Pages PDF
Abstract
Arsenic selenide glass optical fibers typically possess extrinsic absorption bands in the infrared wavelength regions associated with residual hydrogen and oxygen related impurities, despite using 6N purified elemental precursors. Consequently, special additives and refined processing steps are utilized in an attempt to reduce these and other impurities. We investigate the formation of particulate impurities during a purification process based on the addition of 0.1 wt% elemental aluminum (Al) and 0.2 wt% tellurium tetrachloride (TeCl4) during glass synthesis. It was found that during purification and melting steps, Al reacts with TeCl4 to form AlCl3, which in turn reacts with oxygen and hydrogen impurities and the fused quartz (SiO2) ampoule to produce HCl and stable submicron Al2SiO5 compounds in the As-Se glass and fibers. The intensity of the H-Se absorption band centered at 4.57 μm has been significantly reduced from 18 dB/m to 0.8 dB/m. Using thermodynamic data, we have identified stable Al2SiO5 submicron inclusions in the glass and fibers. A two-step gettering process is proposed as a solution to eliminating these inclusions.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , , , , ,