Article ID Journal Published Year Pages File Type
5442971 Optical Materials 2017 7 Pages PDF
Abstract
Glasses based on Sb2O3 make one of the major classes of heavy metal oxide glasses. This paper concerns two antimonite glasses, 88Sb2O3-10Na2O-2Bi2O3 (SNB2) and 60Sb2O3-20WO3-19Na2O-1Bi2O3 (SWNB1), doped with 0.25 mol% Er2O3. Bulk samples have been prepared and their absorption and fluorescence spectra have been recorded. Differential scanning calorimeter (DSC) measurements emphasize a thermal stability range ΔT > 100 °C that expresses a good stability against devitrification. Both FTIR and Raman spectra provide information on the structural organization of the glasses. The maximum phonon energies are 700 cm−1 and 920 cm−1 for SNB2 and SWNB1 glasses, respectively. The spectroscopic analysis of the absorption and emission properties of the Er3+ ions in the SNB2 and SWNB1 glasses has been performed. The Judd-Ofelt theory has been applied to interpret the local environment of the Er3+ ion site and covalency of the ErO bond, but also to determine the radiative lifetime (τr) for 4I13/2 → 4I15/2 emission transition. The emission cross-sections for the 4I13/2 → 4I15/2 transition (1528 nm) were calculated using McCumber and Füchtbauer-Ladenburg theories. We discuss the potential application of these glasses.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,