Article ID Journal Published Year Pages File Type
5443008 Optical Materials 2016 5 Pages PDF
Abstract
An infrared broadband polarization-independent metamaterial absorber is designed and investigated. It consists of a pyramidal metal-dielectric multilayered rectangle grating structure. The absorber exhibits near-unit absorption at multiple adjacent wavelengths overlapping with each other, which results in a high absorption over a wide wavelength range. The absorbance at normal incidence is higher than 90% in a wavelength range of 2321 nm-4631 nm, and the broadband absorption performance can be maintained over a large incident angle range. Furthermore, the mechanism of such broadband absorption are investigated by illustrating the electric field distributions for TE polarization and magnetic field distributions for TM polarization at the resonant wavelengths. It is believed that the conclusions can be applied for developing polarization-independent broadband absorber.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
,