Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5443014 | Optical Materials | 2016 | 5 Pages |
Abstract
Plasmonic field absorption enhancement (PFAE) of Ag nanoparticles (Ag NPs) periodic arrays in CdSe-quantum dot (QD) sensitized ZnO nanorods was numerically investigated by the three-dimensional finite difference time domain (FDTD). The Ag NPs with spherical morphology were found to have an optimum PFAE compared to other Ag NP morphologies such as cubic and pyramidal. The results also showed that PFAE intensity in CdSe-QD-sensitized ZnO nanorods is increased with the reduction of Ag NP diameter until 10Â nm and decreases thereafter. Moreover, the optimum density of spherical Ag NPs for optimum PFAE was observed as 20%. PFAE in CdSe-QD-sensitized ZnO nanorods is improved with increasing space between ZnO nanorods until 180Â nm and reduces thereafter. Finally, the results showed that PFAE of Ag NPs for the high distance between ZnO nanorods is dependent on radiation angle; while for the low distance between ZnO nanorods it is free of radiation angle.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Saman Kohnehpoushi, Mehdi Eskandari, Bahram Abdollahi Nejand, Vahid Ahmadi,