Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5443035 | Optical Materials | 2016 | 10 Pages |
Abstract
The β-NaYF4: Yb3+, Tm3+ @ TiO2 nanocomposite has been prepared by a facile hydrothermal method followed by the hydrolysis of TBOT, and then NaYF4: Yb3+, Tm3+ @ TiO2, HAuCl4 and sodium citrate were put into an oil bath for reaction to obtain the β-NaYF4: Yb3+, Tm3+ @ TiO2 @ Au core-shell nanocomposite. XRD and HRTEM show that the samples exhibit the hexagonal phase NaYF4, anatase TiO2 and cubic Au, indicating that the core-shell phases of NaYF4âTiO2 or NaYF4âTiO2âAu coexist in these samples. EDS and XPS results show the presence of Na, Y, F, Ti, O and Au elements. When TiO2 was coated on the surface of upconversion nanomaterials of NaYF4: Yb3+, Tm3+, the photocatalytic activity was improved significantly, and the β-NaYF4: Yb3+, Tm3+ @ TiO2 nanocomposite gives the highest photodegradation efficiency for MB and RhB, and decomposes about 73% of MB or 80% of RhB within 4.5 h under simulated solar light irradiation respectively. When the ultraviolet light from simulated sunlight irradiation was removed by the addition of a UV filter, the β-NaYF4: Yb3+, Tm3+ @ TiO2 nanocomposite decomposes about 42% of MB or 48% of RhB within 4.5 h. It means that the upconversion-driven photocatalytic performance (decomposes 42% of MB or 48% of RhB) is more effective than UV light-driven photocatalytic performance (31% of MB or 32% of RhB) in the photodegradation process. In addition, the β-NaYF4: Yb3+, Tm3+ @ TiO2 @ Au core-shell nanocomposite does not exhibit the better photocatalytic activity, and the optimal research will be carried out in the future.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Shuwang Duo, JieJun Zhang, Hao Zhang, Zhong Chen, Cuiping Zhong, Tingzhi Liu,