Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5444319 | Energy Procedia | 2017 | 8 Pages |
Abstract
Although a well-established technology in the frame of geothermal applications, the adoption of the binary cycle technology is at the moment typically confined to the exploitation of medium-low temperature liquid geothermal reservoirs, generally between 100-170 °C. The important advantages of the binary cycle technology from the environmental point of view suggest nevertheless that it is worthwhile to investigate whether the application range could be extended to higher temperature reservoirs, and up to which extent. Moreover, the paper investigates the effect of an increasing CO2 content in the geothermal fluid. The paper compares in a convenient high temperature range of the geothermal source the performance of a properly optimized geothermal ORC plant, with the performance of a modified flash plant, whereby the geothermal steam enters a turbine, and the CO2 stream is separated, compressed and finally reinjected. An environmentally friendly working fluid, recently introduced in the market, is considered in the ORC optimization process. The performance comparison will involve the assessment of plant net power. As far as the calculations are concerned, the geothermal fluid is assumed to be a mixture of water and possibly CO2. The auxiliary power consumption is properly accounted for: beyond cooling auxiliaries, a submersible well pump for the ORC plant and a gas compressor for the reinjection of the non-condensable gases in the flash plant are considered.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Davide Bonalumi, Paola Bombarda, Costante Invernizzi,