Article ID Journal Published Year Pages File Type
5444502 Energy Procedia 2017 8 Pages PDF
Abstract
The present research frontier on wind turbine wake analysis is leading to a massive use of large-eddy simulations to completely solve the flow field surrounding the rotors; on the other hand, there is still room for lower-fidelity models with a more affordable computational cost to be used in extended optimization analyses, e.g. for a park layout definition. In this study, a customized version of the Virtual Blade Model (VBM) for ANSYS® FLUENT® is presented. The model allows a hybrid solution of the flow, in which the surrounding environment is simulated through a conventional RANS approach, while blades are replaced by a body force, calculated by a simplified version of the Blade Element Theory. The potential of the newly-customized VBM was evaluated by applying it to the famous NOWITECH-NORCOWE blind tests for horizontal axis wind turbines. Several test cases were analyzed and discussed including: 1) a single turbine; 2) an array of two turbines with one rotor working in the wake of the other one; 3) an array of two staggered rotors; 4) several configurations of rotors working in yawed-flow. The study proves that the VBM model can represent a valuable tool for the analysis of wind turbines wakes and of their interaction with near rotors.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , ,