Article ID Journal Published Year Pages File Type
5444955 Energy Procedia 2017 10 Pages PDF
Abstract
Predicting variations in macroscopic mechanical rock behaviour due to microstructural changes, driven by mineral precipitation and dissolution is necessary to couple chemo-mechanical processes in geological subsurface simulations. We apply 3D numerical homogenization models to estimate Young's moduli for five synthetic microstructures, and successfully validate our results for comparable geometries with the analytical Mori-Tanaka approach. Further, we demonstrate that considering specific rock microstructures is of paramount importance, since calculated elastic properties may deviate by up to 230 % for the same mineral composition. Moreover, agreement between simulated and experimentally determined Young's moduli is significantly improved, when detailed spatial information are employed.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , ,