Article ID Journal Published Year Pages File Type
5447240 Journal of Physics and Chemistry of Solids 2017 10 Pages PDF
Abstract
Activated carbon nanofibers impregnated with titanium (IV) oxide (TiO2), denoted as ACNF-Ti are prepared by carbonization and activation of electrospun nanofibers of polyacrylonitrile (PAN)-titanium (IV) isopropoxide composite. Pristine LiBH4 and nanoconfined LiBH4 in ACNF-Ti, denoted as LiBH4-ACNF-Ti are compacted under the pressures of 434 and 868 MPa. Dehydrogenation temperature of compacted LiBH4 increases (up to 485 °C) with compaction pressure due to poor hydrogen permeability. In the case of compacted LiBH4-ACNF-Ti, major dehydrogenation temperature at 352-359 °C and hydrogen content liberated (74-76% of theoretical capacity) are obtained despite enhanced compaction pressure. Mechanical stability during cycling of compacted LiBH4-ACNF-Ti is achieved. Although hydrogen permeability of compacted LiBH4-ACNF-Ti improves with enhanced compaction pressure, detrimental kinetics and reversibility are detected. Since the fibrous structure of ACNF-Ti are brittle, the broken and/or shorten fibers are observed after compaction under high pressure. The latter results in not only inferior nanoconfinement of LiBH4 into ACNF-Ti, but also agglomeration of hydride materials upon cycling.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , ,