Article ID Journal Published Year Pages File Type
5447322 Journal of Physics and Chemistry of Solids 2017 13 Pages PDF
Abstract
We designed a photocurable pickering emulsion polymerization to create microencapsulated phase change materials (MicroPCM) with polymer-silica hybrid shell. The emulsion was stabilized by modified SiO2 particles without any surfactant or dispersant. The polymerization process can be carried out at ambient temperature only for 5 min ultraviolet radiation, which is a low-energy procedure. The resultant capsules were shown a good core-shell structure and uniform in size. The surface of the microcapsules was covered by SiO2 particles. According to the DSC and TGA examinations, the microcapsules has good thermal energy storage-release performance, enhanced thermal reliability and thermal stability. When ratio of MMA/n-octadecane was 1.5/1.5. The encapsulation efficiency of the microcapsules reached 62.55%, accompanied with 122.31 J/g melting enthalpy. The work is virtually applicable to the construction of a wide variety of organic-inorganic hybrid shell MicroPCM. Furthermore, with the application of this method, exciting opportunities may arise for realizing rapid, continuous and large-scale industrial preparation of MicroPCM.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , ,