Article ID Journal Published Year Pages File Type
5447418 Journal of Physics and Chemistry of Solids 2017 9 Pages PDF
Abstract
We study the dynamical thermoelectric transport in metals subjected to the electron-impurity and the electron-phonon interactions using the memory function formalism. We introduce a generalized Drude form for the Seebeck coefficient in terms of thermoelectric memory function and calculate the latter in various temperature and frequency limits. In the zero frequency and high temperature limit, we find that our results are consistent with the experimental findings and with the traditional Boltzmann equation approach. In the low temperature limit, we find that the Seebeck coefficient is quadratic in temperature. In the finite frequency regime, we report new results: In the electron-phonon interaction case, we find that the Seebeck coefficient shows frequency independent behavior both in the high frequency regime (ω⪢ωD, where ωD is the Debye frequency) and in the low frequency regime (ω⪡ωD), whereas in the intermediate frequencies, it is a monotonically increasing function of frequency. In the case of the electron-impurity interaction, first it decays and then after passing through a minimum it increases with the increase in frequency and saturates at high frequencies.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,