Article ID Journal Published Year Pages File Type
5449018 Optics Communications 2017 7 Pages PDF
Abstract
Coherent anti-Stokes Raman scattering (CARS) is a powerful nonlinear spectroscopy technique that is rapidly gaining recognition of different molecules. Unfortunately, molecular concentration information is generally not immediately accessible from the raw CARS signal due to the nonresonant background. In addition, mainstream biomedical applications of CARS are currently hampered by a complex and bulky excitation setup. Here, we establish a dual-soliton Stokes based CARS spectroscopy scheme capable of quantifying the sample molecular, using a single fiber laser. This dual-soliton CARS scheme takes advantage of a differential configuration to achieve efficient suppression of nonresonant background and therefore allows extraction of quantitative composition information. Besides, our all-fiber based excitation source can probe the most fingerprint region (1100-1800 cm−1) with a spectral resolution of 15 cm−1 under the spectral focusing mechanism, where is considerably more information contained throughout an entire spectrum than at just a single frequency within that spectrum. Systematic studies of the scope of application and several fundamental aspects are discussed. Quantitative capability is further experimentally demonstrated through the determination of oleic acid concentration based on the linear dependence of signal on different Raman vibration bands.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,