Article ID Journal Published Year Pages File Type
5449144 Optics Communications 2017 5 Pages PDF
Abstract
A secure orthogonal frequency division multiplexing (OFDM) transmission scheme precoded by chaotic Zadoff-Chu matrix transform (ZCMT) is proposed and demonstrated. It is proved that the reconfigurable ZCMT matrices after row/column permutations can be applied as an alternative precoder for peak-to-average power ratio (PAPR) reduction. The permutations and the reconfigurable parameters in ZCMT matrix are generated by a hyper digital chaos, in which a huge key space of ∼10800 is created for physical-layer OFDM data encryption. An encrypted data transmission of 8.9 Gb/s optical OFDM signals is successfully demonstrated over 20 km standard single-mode fiber (SSMF) for 16-QAM. The BER performance of the encrypted signals is improved by ∼2 dB (BER@10−3), which is mainly attributed to the effective reduction of PAPR via chaotic ZCMT precoding. Moreover, the chaotic ZCMT precoding scheme requires no sideband information, thus the spectrum efficiency is enhanced during transmission.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,