Article ID Journal Published Year Pages File Type
5449562 Optics Communications 2017 12 Pages PDF
Abstract
Femtosecond laser micromachining has been a promising technique for fabricating three-dimensional (3D) micro/nano-structures in various kinds of dielectric materials with unprecedented spatial resolutions as well as flexibility in terms of the geometry and the materials can be processed. This unique capability opens opportunities for fabrication of 3D high-quality (Q) microresonators, which are one of the key elements in modern photonic applications. Here, we review the recent progress in fabrication of high-Q microresonators on glass and crystalline substrates by employing femtosecond laser direct writing. We demonstrate the applications of the fabricated microresonators in generating low-threshold lasers, high-sensitivity chemical sensing and nonlinear optical wavelength conversion.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , ,