Article ID Journal Published Year Pages File Type
5449736 Optics Communications 2017 4 Pages PDF
Abstract
3D optical coherence tomography imaging (OCT) combined with compressive sensing (CS) has been proved to be an attractive and effective tool in a variety of fields, such as medicine and biology. To achieve high quality imaging while using as less CS sampling rate as possible is the goal of this approach. Here we present an innovative single step fully 3D CS-OCT volumetric image recovery method, in which 3D OCT volumetric image of the object is compressively sampled via our proposed CS coding strategies in all three dimensions while its sparsity is simultaneously taken into consideration in every direction. The object can be directly recovered as the whole volume reconstruction via our advanced full 3D CS reconstruction algorithm. The numerical simulations of a human retina OCT volumetric image reconstruction by our method demonstrate a PSNR of as high as 38dB at a sampling rate of less than 10%.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , ,