Article ID Journal Published Year Pages File Type
5449742 Optics Communications 2017 9 Pages PDF
Abstract
In this article, a few-layered graphene-dielectric multilayer (metamaterial) electro-optic modulator has been proposed in the mid and far infrared range that works on electro-absorption mechanism. Graphene, both mono layer and few layer, is an actively tunable optical material that allows control of inter-band and intra-band transition by tuning its chemical potential. Utilizing this unique feature of graphene, we propose a multilayer graphene dielectric stack where few layer graphene is preferred over mono layer graphene. Although the total thickness of the stack still remains in the nanometer range, this device can exhibit superior performances in terms of (i) high modulation depth, (ii) ultra-broadband performance, (iii) ultra-low insertion loss due to inherent metamaterial properties, (iv)nano-scale footprint, (v) polarization independence and (vi) capability of being integrated to a silicon waveguide. Interestingly, these superior performances, achievable by using few layer graphene with carefully designed metamaterial, may not be possible with mono layer graphene. Our proposals have been validated by both the effective medium theory and general transfer matrix method.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,