Article ID Journal Published Year Pages File Type
5450510 Solar Energy 2017 6 Pages PDF
Abstract

•Carbon Paste was applied as counter electrode.•Holes could be transported effectively to carbon photocathode.•Carbon electrode device exhibited long-term storage stability.•The PCE was obtained as high as 5.9%.

Colloidal quantum dot (CQD) solar cells with a ZnO/PbS-TBAI/PbS-EDT/carbon structure were prepared using a solution processing technique. A commercially available carbon paste that was processed at low-temperatures was used as a counter electrode in place of expensive noble metals, such as Au or Ag, which are used in traditional PbS CQD solar cells. These CQD solar cells exhibited remarkable photovoltaic performance with a short circuit density (Jsc) of 25.6 mA/cm2, an open circuit voltage (Voc) of 0.45 V, a fill factor (FF) of 51.8% and a power conversion efficiency (PCE) as high as 5.9%. A reference device with an Au counter electrode had a PCE of 6.0%. The PCE of the carbon-containing CQD solar cell remained stable for 180 days when tested in ambient atmosphere, while the PCE of the Au-containing CQD solar cell lost 48.3% of its original value. Electrochemical impedance spectroscopy (EIS) demonstrated that holes within the PbS CQD were effectively transported to the carbon counter electrode.

Graphical abstractDownload high-res image (113KB)Download full-size image

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , , , , , ,