Article ID Journal Published Year Pages File Type
5450962 Solar Energy 2017 9 Pages PDF
Abstract
Solar cooling turns out to be a feasible method to reduce the electricity consumption of air conditioning systems in buildings. Air-cooled single effect LiBr-H2O absorption chiller has shown advantages in residential applications. It can be driven by common evacuated tube solar collectors, and save water, maintenance expense and space, due to the absence of cooling tower. However, there is no available small capacity commercial air-cooled LiBr-H2O absorption chiller yet, because of the crystallization risk under ambient conditions. In this work, an air-cooled single effect absorption chiller for which the cooling capacity is 6 kW and a solar air conditioning system were developed. The air-cooled single effect absorption chiller was fabricated and tested under a broad range of steady-state conditions. The chiller was proved successful for real application without crystallization risk and the influence of different operating conditions was also analyzed. Moreover, the performance of a solar air conditioning system using the proposed chiller was investigated for residential cooling application. The results show that the studied absorption chiller can meet about 65% of the total cooling load of the building with an average COPth of about 0.61. Furthermore, 28% of the titled solar radiation is converted into cooling capacity by the solar air conditioning system.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , ,