Article ID Journal Published Year Pages File Type
5451291 Solar Energy 2017 8 Pages PDF
Abstract
A non-intrusive optical method to measure gas phase temperature in strongly scattering multiphase environments under high-flux, broad-band irradiation, relevant to conditions in high temperature solar reactors was developed and demonstrated. The high-flux irradiation with a peak flux of 450 kW/m2 was provided by a 6 kW metal-halide lamp coupled with a reflector and two concentrators. An ethylene/air diffusion flame, which contains fine soot particles, was employed to provide a high temperature reacting flow (approximately 1800 K) with strong optical interference from nano particles having a peak soot volume fractions of ∼16 ppm (with irradiation) under conditions of relevance to solar reactors. Under this environment, the proposed laser-based thermometry technique, line-wise two-line atomic fluorescence (TLAF) has been successfully demonstrated to measure flame temperature with good spatial resolution of ∼1 mm. It was found that the measurement accuracy in the presence of particle and the high-flux external radiation is 65 K at a typical flame temperature of ∼1800 K, while the measurement precision is 38 K. Results reveal that the presence of high-flux irradiation increases the flame temperature by typically 50-100 K. This paper presents a thermometry technique that is suitable for temperature measurement within solar reactors, particularly in hybrid solar-thermal receiver-combustor systems. The experimental setup, measurement methodology and data processing are discussed, followed by the temperature measurements.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , , , ,