Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5451292 | Solar Energy | 2017 | 10 Pages |
Abstract
This work explores the allocation question of battery energy storage systems (BESS) in distribution systems for their voltage mitigation support in integrating high penetration solar photovoltaics (PV). A genetic algorithm (GA)-based bi-level optimization method is developed that reduces the voltage fluctuations caused by PV penetration through deploying BESS among permitted nodes of a distribution system while accounting for their capital, land-of-use and installation costs using a qualitative cost model. The optimization problem considers BESS capacity and installation points in the distribution system as decision variables. Each BESS operation is determined using a linear programming (LP) routine that minimizes the daily coincident peak demand. A comprehensive validation study is carried out through exhaustive enumeration with the IEEE 8500-Node test feeder showing that the proposed method results in consistent decisions that appear to be globally optimal. Further sensitivity studies are conducted to showcase the behavior of the method under varying sizing costs, siting costs and PV penetrations.
Related Topics
Physical Sciences and Engineering
Energy
Renewable Energy, Sustainability and the Environment
Authors
Oytun Babacan, William Torre, Jan Kleissl,