Article ID Journal Published Year Pages File Type
5451360 Solar Energy 2017 21 Pages PDF
Abstract
Conventional maximum power point tracking (MPPT) algorithms fails to track peak power from a solar photovoltaic panel (SPV) effectively under rapidly changing atmospheric and partial shading conditions (PSC). To track peak power more effectively under these conditions, low cost, powerful soft computing (SC) have been introduced by the researchers. Due to the ability to solve non-linear problems, flexibility and adaptive nature, SC based MPPT techniques can track peak power under varying atmospheric conditions. Various SC based MPPT techniques have been proposed by researchers till date. Comprehensive studies on all these techniques are not available. This work summarizes working principle of various SC-MPPT techniques and are compared each other based on the certain parameters like accuracy, tracking efficiency, SPV array dependency, convergence time, complexity of algorithm, hardware implementation, ability to handle PSC's and variables used. The information that is gathered and summarized in this paper will help researchers for future studies in this area.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, ,