Article ID Journal Published Year Pages File Type
5452756 Procedia Structural Integrity 2017 9 Pages PDF
Abstract
The parameters that describe the fracture behavior of concrete are crucial to investigate numerically the response of reinforced concrete (RC) structures. Among them, the fracture energy plays a key role in all those applications that aim to simulate the behavior of RC structures. The fracture energy is a characteristic property of a material but its experimental evaluation could be difficult for quasi-brittle materials such as concrete due to the “width effect” and “size effect” that can lead to some uncertainties in the definition of this parameter. This study presents the results of an experimental campaign conducted on notched specimens to evaluate the fracture energy of concrete. Concrete prisms with different sizes were tested using a three-point bending (TPB) set-up to evaluate the influence of the width and the size on the results. The setup has been designed to become potentially part of the ACI 446 report on fracture. Digital image correlation (DIC) was used to qualitatively and quantitatively study the strain field near the crack tip. Preliminary numerical simulations were performed to investigate the “width effect” in a discrete element framework.
Related Topics
Physical Sciences and Engineering Materials Science Materials Chemistry
Authors
, , ,